First-order correct bootstrap support adjustments for splits that allow hypothesis testing when using maximum likelihood estimation.

نویسنده

  • Edward Susko
چکیده

The most frequent measure of phylogenetic uncertainty for splits is bootstrap support. Although large bootstrap support intuitively suggests that a split in a tree is well supported, it has not been clear how large bootstrap support needs to be to conclude that there is significant evidence that a hypothesized split is present. Indeed, recent work has shown that bootstrap support is not first-order correct and thus cannot be directly used for hypothesis testing. We present methods that adjust bootstrap support values in a maximum likelihood (ML) setting so that they have an interpretation corresponding to P values in conventional hypothesis testing; for instance, adjusted bootstrap support larger than 95% occurs only 5% of the time if the split is not present. Through examples and simulation settings, it is found that adjustments always increase the level of support. We also find that the nature of the adjustment is fairly constant across parameter settings. Finally, we consider adjustments that take into account the data-dependent nature of many hypotheses about splits: the hypothesis that they are present is being tested because they are in the tree estimated through ML. Here, in contrast, we find that bootstrap probability often needs to be adjusted downwards.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods

‎In this paper‎, ‎a new probability distribution‎, ‎based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated‎. ‎The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function‎. ‎Based on the base log-logistics distribution‎, ‎we introduce a new di...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Estimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring

This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...

متن کامل

Poisson-Lindley INAR(1) Processes: Some Estimation and Forecasting Methods

This paper focuses on different methods of estimation and forecasting in first-order integer-valued autoregressive processes with Poisson-Lindley (PLINAR(1)) marginal distribution. For this purpose, the parameters of the model are estimated using Whittle, maximum empirical likelihood and sieve bootstrap methods. Moreover, Bayesian and sieve bootstrap forecasting methods are proposed and predict...

متن کامل

Inference on Pr(X > Y ) Based on Record Values From the Power Hazard Rate Distribution

In this article, we consider the problem of estimating the stress-strength reliability $Pr (X > Y)$ based on upper record values when $X$ and $Y$ are two independent but not identically distributed random variables from the power hazard rate distribution with common scale parameter $k$. When the parameter $k$ is known, the maximum likelihood estimator (MLE), the approximate Bayes estimator and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 27 7  شماره 

صفحات  -

تاریخ انتشار 2010